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G E N E R A L I Z A T I O N  O F  T H E  P O I S E U I L L E  L A W  B A S E D  

ON T H E  C O N S T I T U T I V E  R H E O L O G I C A L  R E L A T I O N  F O R  P O L Y M E R I C  L I Q U I D S  

I. lg. Golovicheva,  G. V. Pyshnogra i ,  and V.  I. P o p o v  1 UDC 532.135 

The method of perturbations of the small parameter determining the anisotropy of the properties 
of linear polymers is used to determine the velocity profile and rate for steady f low in a round 
tube. It is shown that for the four-parameter theological model considered, the stress state of 
the Poiseuille f low along with the tangential shear stress is characterized by the first and second 
differences of  normal stresses. 

At present, polymers are finding ever increasing use in the extracting and processing industries. The 
methods of producing articles from polymer materials are continuously changing. Therefore, studying the 
technologies of polymer processing is an important  practical problem. Solution of this problem requires 
a mathematical formulation of the laws of behavior of polymer fluids in various units of technological 
equipment. Polymer fluids (polymer solutions and melts) have a complex internal structure, and, depending 
on deformation conditions, they can show nonlinear-viscous properties, partially store energy delivered from 
outside, and relax stresses. 

In the case of flows of solutions and melts of linear polymers, the law governing their behavior is 
formulated as a theological constitutive relation describing the nonlinearly viscoelastic properties of polymer 
fluids. However, a consistent rheological constitutive relation describing various regimes of polymer flows has 
not been obtained. It is important, therefore, to verify the agreement between existing rheological models and 
real polymer flows by calculations of test examples of various complexity. The most simple are viscosimetric 
flows: pure shear and uniaxial tension. A theological model obtained as a zero approximation of small molecular 
parameters of the microviscoelasticity theory of linear polymers is proposed and studied in [1-3]. The equations 
of this model have the form 
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Here p is the pressure, t is the time, O'ij and uii = Ovi/Oxk are the stress and velocity-gradient tensors, ~ik is 
a tensorial internal thermodynamic parameter, p is the density of the medium, 770 and r0 are the initial shear 
viscosity and relaxation time, ze and/3 are anisotropy mobility parameters that take into account [1-3] the 
effect of the volume and shape of macromolecular beads on the dynamics of a macromolecule, and D is a first 
invariant of the tensor of additional stresses. 
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It has been shown [1-3] tha t  the theoretical dependences of s tat ionary viscosimetric functions for simple 
shear are in good agreement  wi th  experimental data  for a number  of solutions and melts of linear polymers. 
Therefore, in [1-3], the rheological model (1) is recommended as a basis for engineering calculations. This, 
however, requires considerat ion of more complex flows than the ones realized in viscosimeters, for example, 
stationary flow in a smooth  round tube under the action of a constant  drop in pressure. In this case, system 
(1) is conveniently wri t ten in cylindrical coordinates. Using the formulas for covariant differentiation of tensor 
components [4] in the s ta t ionary  case, we have 
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Here the first invariant of the  tensor of additional stresses is given by the formula 

D = 3(~rT + ~ + ~== - 1). (4) 

We note that  nons ta t ionary  equations, which are also of practical interest, can be obtained from (3) by 
supplementing appropria te  te rms  from [5]. Further we assume that  the mass-force vector F is equal to zero. 

In the case j3 = 0, solution (3), (4) reduces to the results obtained in [5] using the structural- 
phenomenological model of Pokrovskii. We shall seek an axisymmetric solution of system (2)-(4) that  does 
not depend on the z coordinate .  Since, according to the estimates in [2, 3], it is assumed that  ~ << 1, we seek 
this solution with first-order accuracy with respect to ~: 
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Here the superscript 0 corresponds to the zero approximation for #, and the prime corresponds to the first 
approximation. We note  tha t  a zero-approximation solution is obtained in [5] and it has the form 
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With allowance for (5), we write system (3), (4) with first-order accuracy with respect to the anisotropy 
coefficient/3: 

r0 \ dr + r =--0r' (6) 

dg~ 2 
& + -~'~ = 0; (7) 

r 

ro \ dr + = - A ;  (8) 

t dv'~ v~ 
dr + --r = 0; (9) 

1 , 3 r~rr + --sr = O; (10) 
ro 

a ' ~ J  - 7  

(12) 

(la) 

(14) 

- / 3 - ~ / 4 ~ ( ~ ) -  -gO- { -  = - - ~ z  - - - ~ ( ~ )  {= - ; r r0 

3r vr = e; 

' from (11): ' = K r -  3C/ (2rr ) .  Since from Eq. (7) it follows that ~'T~ = C / r  2, we obtain v~ v~ 
' M/r .  Then, formula (13) is written as ~ = 2rM/(3rz) .  The continuity equation (9) gives v r = 

The constants C, K,  and M are determined from the boundary conditions. We obtain ~'T~ = ~ = 
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From the equation of motion (8) we find the following expression for ~rz: 
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i.e. ~z = ~l(r) and ~'~z = 0. From the condition of limited shear strain on the symmet ry  axis of the tube, we 
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The relaxations equations (12) and (14) lead to the relations 
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which, with allowance for r = to, are written with zero-order accuracy with respect to ~ and t in the form 
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Thus, we obtain the following formula for vz 
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whose the solution for small fl has the form 
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Substituting (15), (16), and (18) into formula (17), we obtain 
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Hence it follows that the experimentally observed [6] deflection of the velocity profile from a parabola is 
related to the rheological parameters ~e and ft. Calculations using formula (19) show that as t and ee are 
varied from 0 to 1, the deflection of the velocity profile from a parabolic one reaches 5-10%. Thus, fairly 
accurate measurements of the velocity profile can be the basis for determining the parameters of the model 
a~ and ft. 

From Eq. (6) we establish the presence of nonzero drop in pressure in the radial direction: 
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However, the drop in pressure doe not give rise to flow in this direction. Probably, with increase in the 
pressure gradient in the axial" direction, the stationary solution of the equations becomes unstable, and this 
gives rise to secondary flows. Such calculation involves considerable difficulties even for media described by 
the Navier-Stokes equations. 

The pressure p(r, z) = p(z) + tip(r) is obtained by integration of (6) and (20): 
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The expression for the volumetric flow rate Q = 2rrp / rvz dr takes the form 
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For the class of flows considered, the first and second differences of normal stresses are equal to 
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From (23) and (24) it follows that c~2/ch = - /3/2 with first-order accuracy with respect to/3, i.e., it is 
tile same as in the case of stationary Couette flow [1-3]. 

The terms without/3 and ~e in (19) and (22) are known for a viscous liquid, and the terms with/3 and 
~e introduce a correction for non-Newtonian viscoelastic behavior. In this case, from (19) and (22) we obtain 
formulas for/3 = 0 that were reported previously in [5]. The relations obtained can be used to determine the 
material constants 77o, to,/3, and ee from the experimental dependence of the flow rate on the applied pressure 
gradient. 

In addition Eqs. (5), (15), (16), (18)-(21), (23), (24) can be used in calculations of more complex flows 
than Poiseuille flow, for example, for forced flow between two coaxial cylinders one of which (for example, the 
outer one) is immovable, and the inner cylinder moves along the axis at a constant velocity, or for flows that 
arise in a ring channel formed by fixed concentric cylinders under the action of specified pressure gradient. In 
this case, all constants can be found from the boundary conditions if it is assumed, as before, that the motion 
os steady and rectilinear. 
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